Xuanmao Chen

Phone: (603) 862-4542
Office: Molecular, Cellular, & Biomedical Sciences, Rudman Hall Rm 389, Durham, NH 03824
Xuanmao Chen

Our laboratory has two major research interests: hippocampus-dependent memory formation and primary cilia. “Memory is the glue that holds our mental life together” (Kandel et al., 2014). Aberrant “glue” affects our cognitive capacities and causes many cognitive dysfunction-related disorders, including dementia, amnesia, post-traumatic stress disorder (PTSD), intellectual disability, autism spectrum disorder (ASD), and major depressive disorder (MDD). Elucidating the mechanisms underlying learning, declarative memory formation and retention is needed not only to understand how we acquire and retain experiences, skills, and knowledge, but also to develop mechanism-based therapies to combat these cognitive dysfunction-related disorders. Primary cilia are centriole-derived “cellular antennae” that function to detect numerous signals ranging from photons and odorants to neurotransmitters, hormones, and morphogens, and thus regulate a variety of physiological functions including sensation, cognition, energy balance, and development. Human diseases caused by malfunctions in primary cilia include developmental disorders, polycystic kidney disease, obesity, neurodegeneration, and cognitive impairment. In the central nervous system, both neurons and astrocytes possess a single primary cilium, but their cilia exhibit a dichotomy. Primary cilia in the brain are generally under-studied, and it remains to be elucidated how neuronal primary cilia modulate neuronal function and affect learning and declarative memory formation. The first goal of my research is to determine how neuronal signal, particularly ciliary cAMP signaling, affects neuronal excitability and modulates hippocampus-dependent memory formation. The second goal is to understand how neuronal and astrocytic primary cilia sense changes in the brain and modulate neural function in health and disease conditions. My long-term vision is to build bridges between fundamental research in neuroscience and translational research, facilitating the development of novel therapies to treat cognitive dysfunction-related disorders. My vision also includes increasing efforts to train the next generation of neuroscientists and bio-technologists, and to foster the growth of pre-health sciences majors.

Research Interests: Primary Cilia, Learning, Hippocampus-Dependent Memory Formation, Cognitive Dysfunction-Related Disorders, Adenylyl Cyclases

Research Approaches: molecular biology, biochemical analysis, cellular imaging, behavioral analysis, patch-clamp electrophysiology and field recording, EEG/EMG recording, in vivo deep-brain fiber-optic calcium imaging in freely behaving mice and optogenetics, pharmacological tools, viral vector delivery and transgenic animal models

Lab Members: Yuxin Zhou, Matthew Strobel, Ashley Sterpka, Juan Yang, Liyan Qiu, Eleanor Braun, Angela Martell, Kostandina (Dina) Bicja, Brendon Lewis, Connor Pauplis, and Holly Farrell

Funding: Our research is funded by National Institutes of Health Grants R21MH105746, K01AG054729, and P20GM113131, Cole Neuroscience and Behavioral Faculty Research Awards, UNH teaching assistantships and Summer TA Fellowships, and awards from the Hamel Center for Undergraduate Research.

Research Highlight: UNH Researchers Find Synchronization of Memory Cells Critical For Learning and Forming Memories. https://neurosciencenews.com/memory-learning-cell-synchronization-15649/


  • Ph.D., Physiology, University of Tuebingen
  • M.S., Genetics, Fudan University
  • B.S., Biology, Nanchang University

Courses Taught

  • BCHM 999: Doctoral Research
  • BCHM/BMCB 860/760: Pharmacology
  • BIOL 411H: Hon/Principles of Biol I Lab
  • BMCB 799H: Honors Senior Thesis
  • BMS 799H: Senior Honors Thesis
  • GEN 999: Doctoral Research
  • INCO 590: Rsrch Exp/MCBS
  • INCO 790: Rsrch Exp/MCBS
  • MCBS 901: Intro to Research in Life Sci
  • MCBS 999: Doctoral Thesis

Selected Publications

Sterpka, A., Yang, J., Strobel, M., Zhou, Y., Pauplis, C., & Chen, X. (2020). Diverged morphology changes of astrocytic and neuronal primary cilia under reactive insults. Molecular Brain, 13(1). doi:10.1186/s13041-020-00571-y

Yang, J., Qiu, L., Strobel, M., Kabel, A., Zha, X. -M., & Chen, X. (2020). Acid-Sensing Ion Channels Contribute to Type III Adenylyl Cyclase–Independent Acid Sensing of Mouse Olfactory Sensory Neurons. Molecular Neurobiology, 57(7), 3042-3056. doi:10.1007/s12035-020-01943-0

Zhou, Y., Qiu, L., Wang, H., & Chen, X. (2020). Induction of activity synchronization among primed hippocampal neurons out of random dynamics is key for trace memory formation and retrieval. The FASEB Journal, 34(3), 3658-3676. doi:10.1096/fj.201902274r

Chen, X., Luo, J., Leng, Y., Yang, Y., Zweifel, L. S., Palmiter, R. D., & Storm, D. R. (2016). Ablation of Type III Adenylyl Cyclase in Mice Causes Reduced Neuronal Activity, Altered Sleep Pattern, and Depression-like Phenotypes. Biological Psychiatry, 80(11), 836-848. doi:10.1016/j.biopsych.2015.12.012

Challis, R. C., Tian, H., Wang, J., He, J., Jiang, J., Chen, X., . . . Ma, M. (2015). An Olfactory Cilia Pattern in the Mammalian Nose Ensures High Sensitivity to Odors. Current Biology, 25(19), 2503-2512. doi:10.1016/j.cub.2015.07.065

Chen, X., Cao, H., Saraf, A., Zweifel, L. S., & Storm, D. R. (2015). Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition. Journal of Neuroscience, 35(1), 339-351. doi:10.1523/jneurosci.2478-14.2015

Wardlaw, S. M., Phan, T. X., Saraf, A., Chen, X., & Storm, D. R. (2014). Genetic disruption of the core circadian clock impairs hippocampus-dependent memory. Learning & Memory, 21(8), 417-423. doi:10.1101/lm.035451.114

Xiang, Y. -Y., Chen, X., Li, J., Wang, S., Faclier, G., MacDonald, J. F., . . . Lu, W. -Y. (2013). Isoflurane Regulates Atypical Type-A γ-Aminobutyric Acid Receptors in Alveolar Type II Epithelial Cells. Anesthesiology, 118(5), 1065-1075. doi:10.1097/aln.0b013e31828e180e

Chen, X., Xia, Z., & Storm, D. R. (2012). Stimulation of Electro-Olfactogram Responses in the Main Olfactory Epithelia by Airflow Depends on the Type 3 Adenylyl Cyclase. Journal of Neuroscience, 32(45), 15769-15778. doi:10.1523/jneurosci.2180-12.2012

Chen, X., Qiu, L., Li, M., Dürrnagel, S., Orser, B. A., Xiong, Z. -G., & MacDonald, J. F. (2010). Diarylamidines: High potency inhibitors of acid-sensing ion channels. Neuropharmacology, 58(7), 1045-1053. doi:10.1016/j.neuropharm.2010.01.011

Chen, X., Numata, T., Li, M., Mori, Y., Orser, B. A., Jackson, M. F., . . . MacDonald, J. F. (2010). The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations. Molecular Brain, 3(1), 38. doi:10.1186/1756-6606-3-38

Beazely, M. A., Lim, A., Li, H., Trepanier, C., Chen, X., Sidhu, B., & MacDonald, J. F. (2009). Platelet-derived Growth Factor Selectively Inhibits NR2B-containing N-Methyl-D-aspartate Receptors in CA1 Hippocampal Neurons. Journal of Biological Chemistry, 284(12), 8054-8063. doi:10.1074/jbc.m805384200

Paukert, M., Chen, X., Polleichtner, G., Schindelin, H., & Gründer, S. (2008). Candidate Amino Acids Involved in H+Gating of Acid-sensing Ion Channel 1a. Journal of Biological Chemistry, 283(1), 572-581. doi:10.1074/jbc.m706811200

Chen, X., Polleichtner, G., Kadurin, I., & Gründer, S. (2007). Zebrafish Acid-sensing Ion Channel (ASIC) 4, Characterization of Homo- and Heteromeric Channels, and Identification of Regions Important for Activation by H+. Journal of Biological Chemistry, 282(42), 30406-30413. doi:10.1074/jbc.m702229200

Chen, X., & Gründer, S. (2007). Permeating protons contribute to tachyphylaxis of the acid-sensing ion channel (ASIC) 1a. The Journal of Physiology, 579(3), 657-670. doi:10.1113/jphysiol.2006.120733

Chen, X., Paukert, M., Kadurin, I., Pusch, M., & Gründer, S. (2006). Strong modulation by RFamide neuropeptides of the ASIC1b/3 heteromer in competition with extracellular calcium. Neuropharmacology, 50(8), 964-974. doi:10.1016/j.neuropharm.2006.01.007

Chen, X., Kalbacher, H., & Gründer, S. (2006). Interaction of Acid-sensing Ion Channel (ASIC) 1 with the Tarantula Toxin Psalmotoxin 1 is State Dependent. Journal of General Physiology, 127(3), 267-276. doi:10.1085/jgp.200509409

Chen, X., Kalbacher, H., & Gründer, S. (2005). The Tarantula Toxin Psalmotoxin 1 Inhibits Acid-sensing Ion Channel (ASIC) 1a by Increasing Its Apparent H+ Affinity. Journal of General Physiology, 126(1), 71-79. doi:10.1085/jgp.200509303

Chen, X., Whissell, P., Orser, B. A., & MacDonald, J. F. (n.d.). Functional Modifications of Acid-Sensing Ion Channels by Ligand-Gated Chloride Channels. PLoS ONE, 6(7), e21970. doi:10.1371/journal.pone.0021970

Zhou, Y., Qiu, L., Sterpka, A., Wang, H., Chu, F., & Chen, X. (n.d.). Comparative Phosphoproteomic Profiling of Type III Adenylyl Cyclase Knockout and Control, Male, and Female Mice. Frontiers in Cellular Neuroscience, 13. doi:10.3389/fncel.2019.00034