Monitoring Forest Disturbance and Structure in the Northeast with Sensor Fusion to Support Ecosystem Assessment

Lamprey River Symposium

January 8th, 2018

Lindsay Melendy, Applied Geosolutions

Overview

- 1. AGS Missions
- 2. Project Goals
- 3. Field Data Collection Sites
- 4. Example Remote Sensing Observations
- 5. Lidar Basics & Tools
- 6. Lidar Products
- 7. Conclusions & Next Steps

Applied Geosolutions (AGS)

Leading edge science-based firm, established in 2000

- Monitoring, assessing, developing
 - geospatial decisions support systems
 - environmental change and ecosystem services
 - create/apply tools and web mapping for non-experts
- National and international collaborators
 - academic institutions, government agencies, industries, and private clients
- This project partners with UNH & UMASS

Forest Disturbances

NH Tornado, 2008

WMNF Fire, 2017

Gypsy Moths, RI

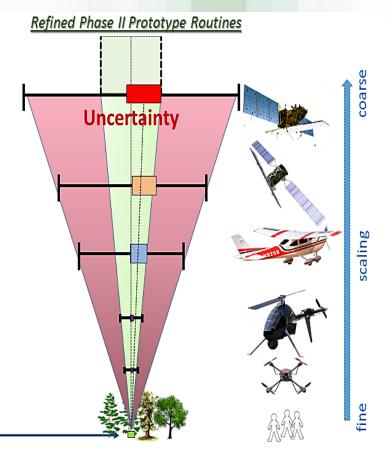
NH land conversion to cattle farm in Epsom, NHApplied · Geosolutions

Project Goals

- Map forest structure metrics
 - Aboveground biomass, forest stand height, crown canopy cover
- Understand relationships between metrics, ecosystem functions and services, and their dynamics
- Detect and evaluate intensity, frequency and magnitude of disturbances

Phase II Instrument Characteristics

L-band satellite (PALSAR-2) (14-day, 4-pol, 6m+ pixels, 5,625km² coverage)


C-band satellite (Sentinel-1 A & B) (6-day, 2-band, 10m+ pixels, 250km swath)

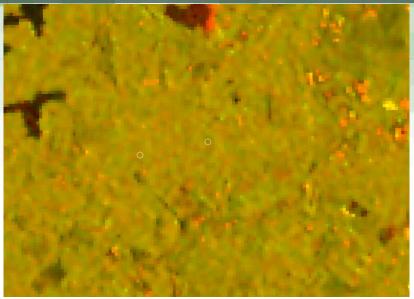
airborne L- and S- SAR (Cesna) (seasonal, 200-band, 1m pixels, 7km swath)

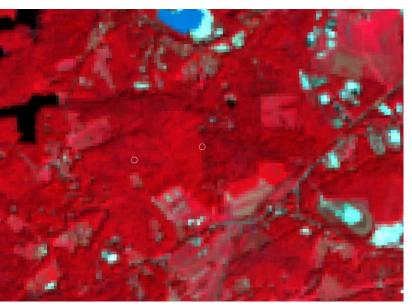
UAS Lidar (Pulse Vapor Riegel VUX-1) (ad hoc, 2-channel return, 15cm pixels)

UAS Quadcopter (DJ)
(ad hoc, 4-band, 1m pixels, 25hectares)

field level plots / terrestrial lidar (ad hoc, 1m pixels, site)

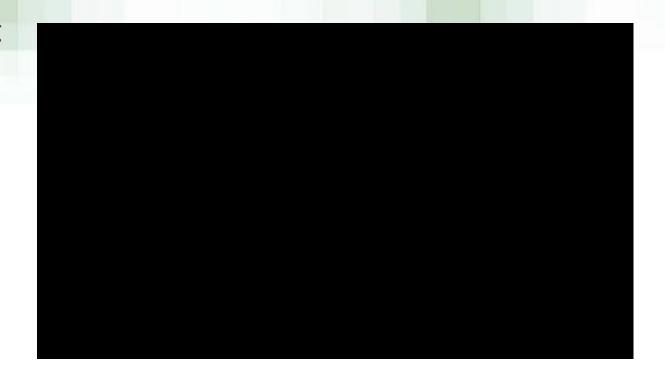
Field Work at a Lamprey / Oyster River Watershed Site


6



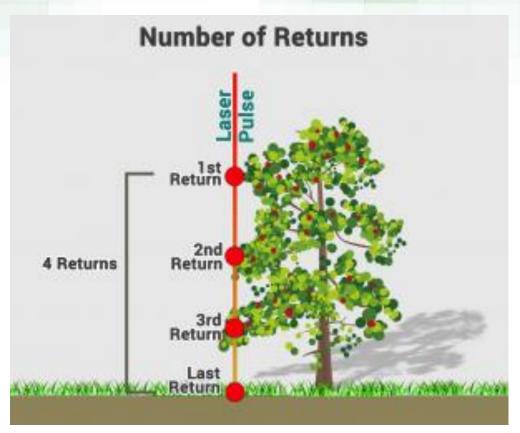
Satellite Sensor Data over Lamprey River Watershed Region

- Radar (L-band PALSAR-2, C-Band Seninel-1A):
 - Active sensor
 - through cloud cover
 - vegetation structure, geometry, and moisture content
 - wavelength frequency, polarization and viewing geometry
 - longer wavelengths (smaller frequency) = greater penetration of canopy
 - cross-pol (HV) or dual-pol (HH or VV)
 - incidence angle (θ)
- Optical (Landsat 8)
 - Passive sensor
 - susceptible to interference from clouds and other climate factors
 - Cloudmask
 - include the visible, near-, middle-, and shortwave-infrared
 - detecting and measuring forest health



Components of a Lidar System

- Laser device
- inertial navigational measurement unit (IMU)
 - continuously records aircraft's orientation
- High-precision airborne global positioning system (GPS) unit
- computer interface
 - manages communication among devices and stores data
- GPS base station
 - known location on the ground
 - within 50 km of the aircraft

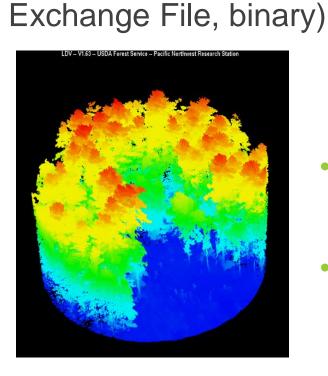

Lidar Basics

- Laser device emits pulses of light
 - determines the range to a target
- Distance to target = time delay between the emission of the pulse and the detection of the reflected (backscattered) signal
- Pulses in the near-infrared part of the spectrum (1040 1065 nm)
 - topographic mapping and forestry applications
- Often cost-prohibitive
 - Very high spatial resolution
 - Expensive equipment
 - not easy to collect (need pilot, someone knowledgeable about sensor systems)

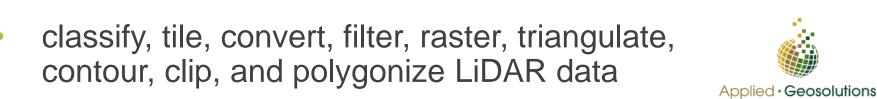
Applied · Geosolutions

Lidar Basics, cont...

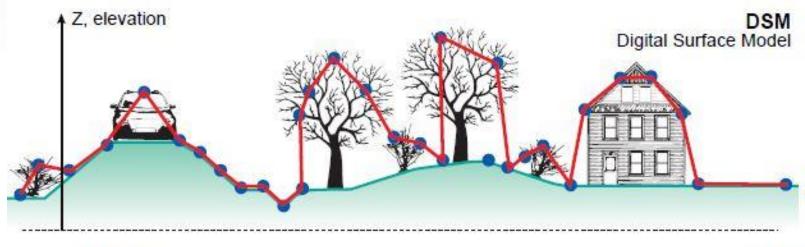
- Pulse density = spatial resolution
- Return density = mean number of returns in the data set in a unit square area
- Return intensity
 - strength of the beam backscattering
 - Depends on target reflectance properties
 - Can be used in classification
- Return number = rank of a return among those generated from a single beam
- Number of returns
- Classification scheme (2=ground,3=low vegetation,

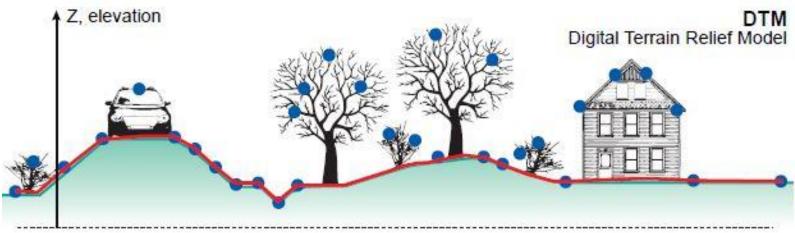

4=medium vegetation, etc...)

Open-source Lidar Tools

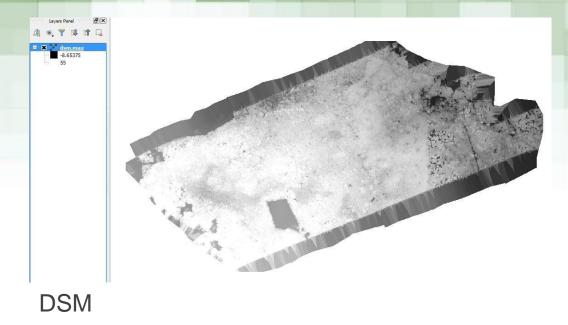

- Lidar2dems
 - Create DEMs from Lidar data, uses PDAL
 - Locally developed tool, AGS/UNH/outside developers

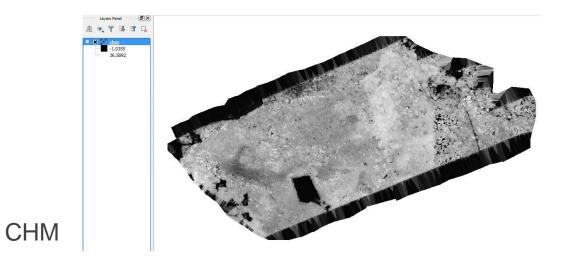
FUSION

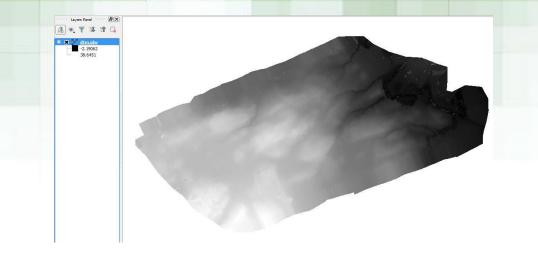

- Generate point cloud statistics, canopy cover stats, select/display Lidar data
- developed by the Silviculture and Forest Models Team, Research Branch of the US Forest Service
- PDAL (Point Data Abstraction Library)
 - translates and processes point cloud data
- **LAStools**
 - contour, clip, and polygonize LiDAR data

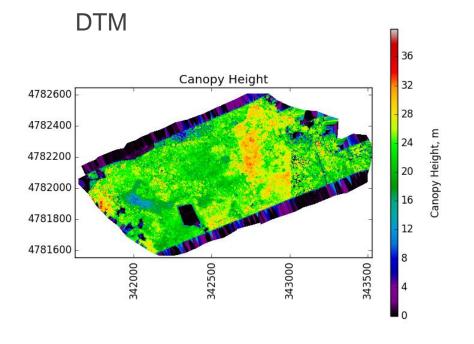


LAS files- (Lidar Data

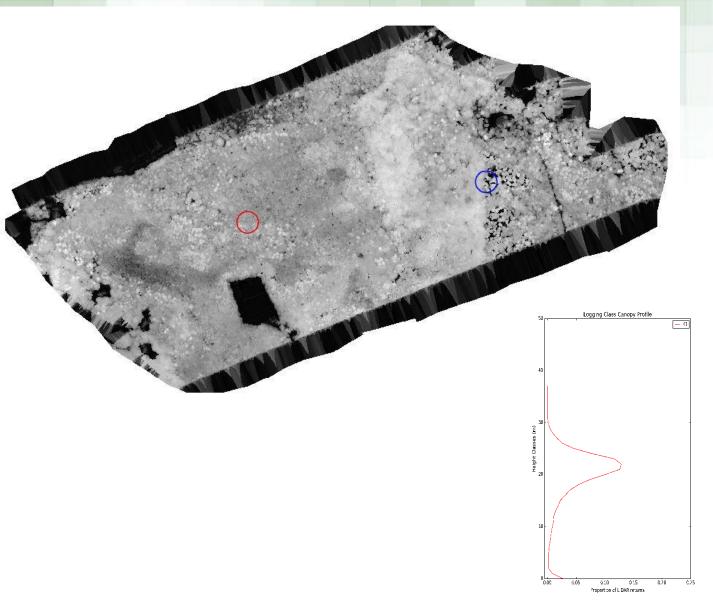

Lidar Products

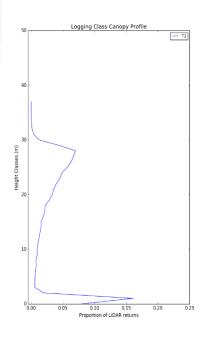


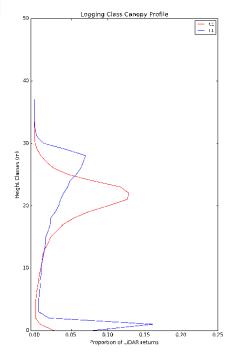




Lidar Products, etc...







Field Data Collection Sites-Kingman Farm

Conclusions

- Multi-sensor fusion / combination provides more thorough assessment
- Lidar very accurate tree height maps @ 1m resolution
- Repeat-pass InSAR fairly accurate height maps @ ~1-3 hectare scale

Next Steps

- Measuring tornado regrowth and shifts in forest structure (stand height, AGB, crown size)
- Gypsy Moth monitoring and forecasting this upcoming season (defoliation extent, intensity, timing)
- Other application partnerships in Lamprey watershed?

Questions?

Thank you!

Happy to share products, code, and field data!

References

NEON. "How Does LiDAR Remote Sensing Work? Light Detection and Ranging". YouTube. YouTube, 24 November 2014. Web. 5 Jan 2017.

[Photograph of RI Gypsy Moth Aerial]. Retrieved from https://www.bostonglobe.com/metro/2016/06/29/the-gypsy-moth-effect/l4dEU5x6LCrBrdFV9Kz9EP/story.html?pic=9 (Page4)

[Photograph of DSM versus DTM]. Retrieved from http://www.charim.net/datamanagement/32 (Page 12).

[Photograph of White Mountain Regional Forest Fire]. Retrieved from http://nhpr.org/post/rain-helping-firefighters-battle-white-mountains#stream/0 (Page 4).

[Photograph of 2008 New Hampshire Tornado]. Retrieved from https://www.adamdow.com/blog/posts/2008/07/29/tornado-pictures/ (Page 4).

[Photograph of New Hampshire Forest Clearing for Cattle Farm]. Retrieved from http://nhforestry.com/land-clearings/ (Page 4).

[Photograph of Lidar Returns from Vegetation]. Retrieved from http://gisgeography.com/lidar-light-detection-and-ranging/ (Page 9).

Torbick, Nathan. [Photographer] (2017). Forest Data Field Collection [Photograph] (Page 14).

