Increasing sediment in Great Bay: Can we finger a culprit?

William H. McDowell
UNH Dept. Natural Resources & the Environment
NH Water Resources Research Center

Clear increase in TSS at Adams Point, low tide

PREP SOE (2018)

Possible mechanisms

- Reduced filtering by oysters (need to know previous biomass and filtering rate to estimate impacts of oyster decline)
- Reduced benthic protection from erosion due to eelgrass decline
- Degradation of marsh due to increased N loading into Bay
- Increased production from watershed due to increased urbanization, impervious surface, or more extreme events

Oyster decline (PREP SOE 2018)

Eelgrass decline (PREP SOE 2018)

Marsh decline due to N fertilization (Deegan et al. 2012 Nature)

Reference

Nutrient-enriched

Increased watershed production of TSS

Land use change, extreme events

Watersheds in the Great Bay Estuary System

How do we finger a culprit?

- Assess TSS load from watersheds and relate that to concentrations in Bay
- Elemental characteristics of TSS (C/N of TSS compared to possible sources)
- Biogeochemcial tracers (¹³C, ¹⁵ N, rare earth elements)

TSS notoriously variable, and responsive to flow

Aquatic Sensors to capture that variability

YSI Exo 2 Sonde 6 optical ports

Sensors predict TSS well

(Snyder et al. in revision WRR)

Sensors also predict PC and PN, improving estimates of total N loading

C/N (mass) of TSS in NH rivers, compared to salt marsh soils, algae, eelgrass

Proposed research plan to address TSS

- Establish sensors and autosamplers for TSS at several important river mouths
- Develop library of TSS samples for C/N and multiple tracer analysis
- Use mass inputs from rivers, mass in Bay, and tracers to constrain likely sources of TSS in Bay

Acknowledgments

- Jody Potter, Lisle Snyder and Water Quality Analysis Laboratory for sample analysis and sensor operation
- Funding from NH Agricultural Experiment Station, NH Water Resources Research Center, NSF EPSCoR

Current N Conditions Map

(Median Total Dissolved Nitrogen)

Sampled 5 times: Oct. 2010, May 2011 and 3 times summer 2012

