Todd Guerdat, Ph.D.

Todd Guerdat, Ph.D.

Assistant Professor

Education:

Ph.D. Biological and Agricultural Engineering, North Carolina State University, 2012
M.S. Biological and Agricultural Engineering, North Carolina State University, 2008
B.S. Biology, University of North Carolina at Wilmington, Wilmington, NC, 1999
A.S Aquaculture, Brunswick Community College, Supply, NC, 1999

Research Interests:

My research revolves around the industrial and societal issues surrounding sustainable aquaculture and agricultural practices worldwide. As health conscious consumers continue to increase the per capita consumption of seafood and demand cleaner, greener and safer food sources, we are faced with a need to commit to the development and acceptance of sustainable practices for the agricultural industry.

However, we also need to meet the growing needs for production characteristics such as sustainability, economic feasibility, and optimized efficiency in the utilization of nutrients, energy, and materials. The answer to this is a paradigm shift from the typical engineering model of separate unit processes and a move toward the integration of systems. Integrated systems not only offer an opportunity to improve utilization efficiency, but also diversify the farmer’s production model thus providing a potential for greater resiliency and sustained productivity.

My research objectives are based on the development of sustainable agricultural and aquacultural practices by utilizing integrated systems such as (but not limited to) recirculating aquaculture and hydroponic systems as a means to explore and solve a wide variety of environmental and societal issues.  My current and future research objectives include:

  1. Development of recirculating farms, rather than individual recirculating systems. Research needs to focus on influencing and controlling the fate of nutrients from farm systems.
  2. Establishing efficient engineering design models which incorporate optimized energy balances holistically – species selection, component selection, system and building design, and management and operation.
  3. Addressing environmental impact through the potential for enabling reuse of agricultural effluent through innovative waste/wastewater treatment processes and engineering designs.  Such an approach removes the “black box” approach too often used in research studies.
  4. Create a sustainable, “location-independent” means for seafood production by creating a modular design, conceptually, that may be located in multiple locations.
  5. Evaluate new technologies as they emerge on the market for ongoing improvement of seafood production and/or wastewater treatment processes.
  6. Integrating technologies for the purpose of improved efficiency and productivity.

My research program is centered on scalable nutrient capture and reuse systems, protected agricultural systems, and alternative agricultural energy systems which will provide opportunities for students and farmers alike to apply their knowledge in a practical manner. My research objectives provide a broad range of opportunities for research and will enable cross-college collaborations.

By focusing on engineering principles as they pertain to agriculture and aquaculture, and engaging students by providing a fundamental, yet practical, education, we will create a well-rounded, practical educational experience in an area that is currently changing the world as we know it at every scale.

Selected Publications:

Guerdat, T.C., Losordo, T.M., DeLong, D.P., Jones, R.D., 2012.  An evaluation of solid waste capture from recirculating aquaculture systems using a geotextile bag system with a flocculant-aid.  Aquacultural Engineering, 54, 1-8.

Guerdat, T.C., Losordo, T.M., Classen, J.J., Osborne, J.A., DeLong, D.P., 2010.  An evaluation of commercially available biological filters for recirculating aquaculture systems. Aquacultural Engineering, 42, 38-49.

Guerdat, T.C., Losordo, T.M., Classen, J.J., Osborne, J.A., DeLong, D.P., 2011.  Evaluating the effect of organic carbon on biological filtration performance in a large scale recirculating aquaculture system. Aquacultural Engineering 44, 10-18.

Losordo, T.M., DeLong, D.P., Guerdat, T.C., 2009.  Advances in technology and practice for land-based aquaculture systems: tank-based recirculating systems for finfish production.  In: Burnell, G., Allan, G. (Eds.), New technologies in aquaculture: Improving production efficiency, quality and environmental management.  Woodhead Publishing Limited, Cambridge, UK.

Patents:

Biological treatment systems utilizing selectively permeable barriers (co-inventor; WO 2014026015 A1)

A water treatment system for removing contaminants by employing a semi-permeable membrane while utilizing microorganisms which can metabolize the contaminants. In particular, the microorganisms are cultured in reactors having semi-permeable barriers which regulate the flow of the contaminants between reactor volumes to the microorganisms.

Todd Guerdat
Office: G42 Spaulding Hall
Lab: 234 Spaulding Hall
Phone: 
603.862.0135 (office) 603.862.1085 (lab)