Structural Biology and Proteomics

The enzymatic, scaffolding, trafficking and regulatory functions of proteins are carried out on the platform of their three-dimensional structures.  Mechanistic insights on diverse cellular processes can be derived from the characterization of protein structures, including their 3D structure and hydrodynamics, spatial and temporal regulation of protein interactions, and protein glycosylation.  A number of UNH research programs are addressing the structure/function relationship of proteins and protein assemblies with diverse spectroscopic approaches utilizing centrifugation, mass spectrometry, and chemical or fluorescent labeling.

__________________________________________________________________________________________________________

Feixia Chu -- Structural determination of protein assemblies
 

Protein assemblies play pivotal roles inside the cell, functioning as highly connected and dynamic modules to carry out cellular processes. Knowledge of the molecular recognition (or ‘molecular sociology’) among proteins within these assemblies is critical to understanding the orchestration of sophisticated cellular processes. The Chu lab is using chemical cross-linking in conjunction with mass spectrometric analysis to elucidate structural information on protein assemblies. Data from such biochemical analysis can be integrated through computational modeling to reveal protein interaction surfaces and novel conformations of protein complexes.

However, accurate identification of chemical cross-linked species has proved challenging. Towards this front in proteomics research, our lab is making new chemical probes, designing novel separation strategies, and developing new bioinformatic tools. In collaboration with multiple groups, we are using this approach to provide mechanistic understanding on key complexes in visual transduction, transcriptional regulation, protein translocation and nuclear receptor signaling.

Feixia Chu – Rudman Hall, Room 306
Phone: (603) 862-2436
Email: Feixia.Chu@unh.edu  

Foci Chu protein assemblies

___________________________________________________________________________________________________________

Rick Cote -- Structural approaches to understanding the visual signaling pathway
 

Light stimulation causes the activation of the cGMP phosphodiesterase (PDE6), the central effector of the visual transduction pathway. Precise regulation of the lifetime of PDE6 activation is required to control the sensitivity, amplitude and kinetics of the light response. The Cote lab focuses on understanding the sequence of steps by which transducin relieves the inhibited state of the PDE6 holoenzyme, as well as identifying other proteins which may form a multi-protein complex with PDE6 to further regulate its hydrolytic activity.

Several putative PDE6 binding partners have been reported, but the significance of most of these interactions for the phototransduction mechanism is not known. In collaboration with the Chu lab (UNH), we are using proteomic tools to study the ‘interactome’ of PDE6 and to characterize the PDE6 signaling complex in its dark-adapted, transiently activated, and persistently activated states.

Another active area of investigation relates to the structural and functional relatedness of the photoreceptor PDE6 enzyme family with PDE5, prevalent in vascular smooth muscle and a therapeutic target of drugs increasingly used for treatments of the cardiovascular and urogenital systems. Adverse visual effects can accompany administration of PDE5 inhibitors due to the lack of selectivity of most drugs for PDE6. Whereas PDE5 is readily expressed as a recombinant protein, efforts to express the structurally and functionally related PDE6 have met with failure. Using replacement of evolutionarily conserved amino acids that differ between the PDE5 and PDE6 families, we are identifying the amino acids that confer drug specificity and catalytic efficiency of PDE6.

Rick Cote – Rudman Hall, Room 379
Phone: (603) 862-2458
Email: Rick.Cote@unh.edu

Foci Cote cialis binding

__________________________________________________________________________________________________________

Tom Laue -- Biophysical studies of macromolecular interactions
 

The Laue lab conducts research to develop unique instruments and first-principle methods to characterize molecular interactions of macromolecules. One area of interest focuses on developing next-generation analytical ultracentrifugation hardware (particularly detection systems) and the design of sophisticated data acquisition hardware and software. The Laue lab also has pioneered research in electrophoretic techniques applied to the determination of the surface charge of macromoleculces in solution. 

Tom Laue – Rudman Hall, Room 379
Phone: (603) 862-2459
Email: Tom.Laue@unh.edu 

Foci Laue macromolecular

__________________________________________________________________________________________________________

Vernon Reinhold -- Applications in Glycomics Structural Biology with Sequential Mass Spectrometry
 

Glycans (carbohydrates bound to lipids & proteins) stand out from all classes of biomolecules because of their unsurpassed structural complexity. Such features are generated by stereo and structural isomers, anomeric status of the glycosidic bond, ring size, branching, and multiple linkage points for each monomer. Additionally, monomers within this “bush-like” structure frequently exhibit a wide range of site-specific substitutions. Although the first biomolecule identified, a sequencing protocol is yet to be established, two and a half centuries later. When correlating biological function, such diversity imposes enormous challenge, and an even greater problem trying to determine such aberrations. We at the UNH Glycomics Center are on too this problem with a step-wise disassembly procedure using ion trap mass spectrometry and a set of supporting technologies. Molecular glycosylation is sensitive to disease manifestations, and subtle changes in the glycan’s structure, have untoward consequences, as in tissue rejection, cancer, HIV, and the specificity of blood groups.

Structural Biology also includes Genomics and Glycomics.

Vern Reinhold – 440 Gregg Hall
Phone: (603) 862-2527
Email: Vernon.Reinholdr@unh.edu

Foci Reinhold glycomics biology

___________________________________________________________________________________________________________

Stacia A. Sower -- Structure-function relationships of neurohormones and receptors 
 

The Sower laboratory emphasizes approaches to studying neuroendocrinology that utilize new methodologies in the disciplines of hormonal genomics, proteomics and bioinformatics, with a focus on basal vertebrate systems. This work, conducted in the Center for Molecular and Comparative Endocrinology, involves collaborations with more than 42 scientists world-wide.  In addition, the members of Dr. Sower’s group collaborate with an international consortium in the establishment and annotation of the transcriptome resulting from the mapping of the lamprey genome, focusing on the annotation and synteny of hormones, receptors and signaling pathways. This work will advance our knowledge of the molecular evolution of hormones and receptors throughout vertebrates, leading to the development of better therapies for neuroendocrine disorders in humans as well as novel strategies for improving and controlling reproduction in fish.

Stacia Sower – Rudman Hall, Room 316
Phone: (603) 862-2013
Email: Stacia.Sower@unh.edu

Foci Sower neurohormones and receptors