Louis Tisa, Ph.D.

Louis Tisa, Ph.D.

Professor

Educational Background:

Ph.D., University of Wisconsin, 1987

Statement of my research interests:

We are interested in genome-wide approaches toward environmental microbiology and host-microbe interactions in symbiosis and pathogenesis.  For over a decade, the Tisa lab has been investigating several microbial symbiotic associations including plant-microbe and bacterial-nematode systems and other environmentally related microbes. These relationships have common mechanisms of establishment including the ability to overcome the host defenses.  The roles of microbial behavior, signal molecules, and signal transduction in host-microbe interactions are areas of current focus. My group works on two major model systems: plant-microbe and microbe-nematode interactions.

My research program is divided into several areas.

(1) Understanding Beneficial Plant-Microbe Interactions.  Our plant-microbe studies are centered on the symbiotic association between Frankia and actinorhizal plants, which has an infection process to develop a root nodule structure. Frankia sp. are nitrogen-fixing actinomycetes (gram-positive filamentous bacteria) that form a symbiotic association with over 200 different species of plants belonging to eight different plant families, which are only distantly related to each other. These actinorhizal plants are an important part of the nitrogen budget of the planet and are of potential economic significance. This actinobacteria shows many similarities to another actinobacteria, Mycobacteria, intercellular pathogen.  Besides investigating the host-microbe interaction of this system we are using a genome-wide approach to elucidate natural product biosynthesis capacity for novel microbes including Frankia and other actinobacteria. Although Frankia are not currently known as prolific natural product producer, comparative genome studies indicate the presence biosynthetic natural product gene clusters similar to Streptomyces, Salinospora, and other producers. We are interested in identifying the natural products and their role in nature.

My studies have concentrated on the physiology, biochemistry, and genetics of the microorganism. We are developing genetic tools that are necessary for the establishment of a genetic transfer system with Frankia. A significant amount of our effort on the Frankia-actinorhizal symbiosis is focused on developing cutting-edge tools to understand this microbe and its role in the environment. To this effort,  we have sequenced over 15 Frankia genomes, which has provided significant background information for further genetic approaches and gene expression studies including proteomics and transcriptome analysis. Thus, the time is right to initiate functional genomic and proteomic studies on this bacterial system. Our future efforts are directed toward functional genomics of Frankia to help our understanding of the actinorhizal symbiosis. We have started to use of power of proteomics and genomics to study Frankia physiology, developmental biology, and its interactions with its host plants. We have initially focused on the use of proteomic tools including 2-dimensional gel electrophoresis and MALDI-TOF to identify vesicle-specific proteins and novel proteins involved in actinorhizal nitrogen fixation. We want also correlate the Frankia proteomics results with gene expression studies.  

Analysis of the Frankia genomes has provided a myriad of information on these bacteria and several surprises including the extraordinary size discrepancy among the eleven Frankia genomes (5.4 Mb for CcI3 to 9.9 Mb for CN3). The absence of obvious nodulation genes similar to those found in Rhizobia genomes suggests that the actinorhizal symbiosis uses novel signal compounds during the infection process. We have shown that in response to host plant root exudates, Frankia produced an extracellular factor involved in early pre-infection signaling events.  In a USDA-funded collaborative study with the Dr. Sergio Svisstoonhoff at the Institut de Recherche pours le Développement (IRD, Montpelier, France), we are investigating the identity bacterial signaling molecules involved in the actinorhizal symbiosis and the effect of Frankia signaling molecule on the host plant and its role in the development of the symbiosis. 

(2) Signal Transduction in Symbiosis and Pathogenesis. The use of microbe-insect and microbe-nematode interactions as model systems to study pathogenesis has been increasing rapidly. These low costs model systems are ethically attractive compared to the use of mammalian systems and may provide evolutionary implications for diseases because of the age of invertebrate lineages. We are currently studying microbe-nematode interactions specifically the Photorhabdus - entomopathogenic nematodes (Heterorhabditis)  association, which is useful biological control agent for several insect pest. We are interested in understanding the roles that natural products and signal transduction play in the life cycle of Photorhabdus spp.  This bacterium is a symbiont of nematodes and an insect pathogen and is also an excellent model system to understand the ability of an organism to switch from symbiotic state to pathogenic state.  These bacteria produce antibiotics and insecticides and they also show great potential as a biological control agent. Besides production of antibiotics and toxins, the bacteria also generate essential growth factors for the nematode.  Nematode development and reproduction requires the bacteria which are specific for each nematode species. Thus, the bacteria create an optimum environment in the insect cadaver for nematode reproduction and development, and the eventual release of infective juveniles.  These bacteria are motile by swimming and swarming.  Cells use signal transduction to monitor changes in their environment and make the necessary responses to these changes. For example, the signal transduction process influences and controls the development of cell motility and surface-associated growth (termed biofilms). Motility and biofilm formation also play a significant role in the life cycles of both symbiotic and pathogenic bacteria. Current studies have centered on a molecular genetic approach to understand the roles of signal transduction and natural products in symbiosis, pathogenesis and the switch between these two life stages.

Besides the nematode-associated-forms, human infections with Photorhabdus spp. have been reported in the USA and Australia . While the route of infection was unknown, the clinical isolates of Photorhabdus from these human infections are homogenous and form a species that is distinct from the nematode-symbiotic Photorhabdus. The identification of clinical isolates suggests that Photorhabdus might be a new emerging human pathogen. We have also been investigating these isolates

We are looking at other potential model systems including a Serratia-C.briggsae association. In collaboration with Kelley Thomas (UNH) and Vaughn Cooper (UNH), we are investigating an unknown Serratia strain that we have learned can form a symbiosis with Caenorhabditis nematodes, including C. elegans. Like the Photorhabdus/Heterorhabditis system, this bacterial-nematode symbiosis is a potent insect pathogen and potential biological control agent. Studying this interaction is especially promising because of the wealth of information about the nematode host and the genomes of two other insect- and human-pathogenic Serratia strains are available. Our lab has taken forward- and reverse-genetics approaches towards addressing what are the virulence factors involved in insect pathogenesis.   We have also used RNASeq methods investigate global gene expression under different environmental conditions including host-pathogen.

(3) Bioremediation and microbial interaction with heavy metals. Toxic metals and organic contaminants pose a significant environmental problem that impacts human health. My lab has a strong interest in the use of microorganisms to clean up these environments termed bioremediation. My research group is associated with the Bedrock Bioremediation Center (BBC), which is a new center situated within the Environmental Research Group at the University of New Hampshire. It specializes in multidisciplinary research on bioremediation of organically-contaminated bedrock aquifers including developing improved methods of site characterization, new engineering technologies to improve the success of bioremediation in situ, and new laboratory procedures to estimate the rate of in situ biodegradation.

Toxic heavy metals and metalloids pose a significant environmental problem that impacts human health. While organic contaminants can be degraded completely, toxic metals and metalloids are persistent and only change their elemental state. This persistence has rendered these heavy-metal-contaminated environments as unusable for extended periods of time. There is a clear need to clean up these environments. Physical methods such as the removal of contaminated soil from a site and its burial elsewhere are environmentally destructive. The high costs and the sometimes-limited effectiveness of these conventional remediation technologies have stimulated interest in bioremediation, including phytoremediation, as an alternative clean-up method. Actinorhizal plants provide an excellent mechanism to restore disrupted environmental sites. Actinorhizal plants have been successfully used to recolonize and reclaim land that has been industrial wasteland including lands spoiled by metaliferous mine spoils and smelter waste. Although the use of actinorhizal plants for land reclamation of industrial wasteland is well know, the mechanisms of how they function in this role have not been investigated.

We have been investigating the physiology and the genetics of Frankia and are establishing genomic and genetic tools for this bacterial system to exploit their potential to provide renewable resources for fuel and restore previously disrupted environments. This project is the result of these studies and our interest in heavy metals and bioremediation. Our results indicate that Frankia is resistant to elevated levels of heavy metals. Their mechanisms of resistance are unknown, but our preliminary results suggest that detoxification of a metal and that Frankia has the ability to bind and sequester several toxic heavy metals. These results indicate that Frankia has potential remediation and phytoremediation applications.

From our survey of heavy metal sensitivities, the following five possible metal resistance traits were identified as potential candidates for further study: arsenate, copper, lead, chromate and selenite. Selenite resistance appears to involve detoxification by the reduction of the oxyanion selenite (clear) to elemental selenium (red precipitate). We have some preliminary lines of evidence which suggest that resistance to Cu +2 and Pb +2 may involve the binding and sequestering of the heavy metal. Since Frankia is resistant only to arsenate and is sensitive to arsenite and antimony, we would predict that this resistance is caused by an alteration of the phosphate transport system. Some Streptomyces species acquire resistance by that mechanism. Based on our preliminary results we would also predict that chromate resistance occurs by an efflux mechanism and not by a chromate reduction. Chromate efflux systems have been identified in several bacterial systems.

We are interest in identifying the components that involved in Pb 2+, Cu 2+ and SeO 3 -2 resistance. One approach would use proteomic tools to identify specific proteins or gene products that are involved heavy metal resistance. We are also interested in understanding the molecular and biochemical mechanisms of the resistance traits.  

Funding:

Support for the research in my lab is currently or has been funded by the following sources: American Heart Association, EPA, NSF, NIH, USDA CREES, USDA Hatch and other outside contracts.

Representative Reprints (post 2010):

Normand, P, D.R. Benson, and L.S. Tisa. 2015. Genome characteristics of Frankia sp. reflect host range and host plant  biogeography.  Chapter 24 in Biological Nitrogen Fixation Vol. 1. F.J. de Bruijn (Ed.) John Wiley & Sons, Inc. pp. 245-251.

Beauchemin, N. F. Ghodhbane-Gtari, T. Furnholm, J. Lavenus, S. Svistoonoff, P. Doumas, D. Bogusz, L. Laplaze, and L. S. Tisa.
2015. Actinorhizal Plant Root Exudates Alter Frankia Physiology. Chapter 35 in Biological Nitrogen Fixation Vol. 1. F.J. de Bruijn (Ed.) John Wiley & Sons, Inc.  pp. 359-363.

Baker, E., Y. Tang, F. Chu, and L. S. Tisa. 2015. Molecular Responses of Frankia sp. strain QA3 to Naphthalene. Accepted Can. J. Microbiol. 10.1139/cjm-2014-0786.

Mansour, S. R., R. Oshone, S. G. Hurst IV, K. Morris, W. K. Thomas, and L. S. Tisa.  2014.  Draft Genome Sequence of Frankia sp. strain CcI6, a Salt-tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodule of Casuarina cunninghamiana. Genome  Announc. 2(1) e01205-13 (doi: 10.1128/genomeA.01205-13).

Ghodhbane-Gtari, F., I. Nouioui, K. Salem, L. S. Tisa, H. -P. Klenk, and M. Gtari. 2014. Nocardia casuarinae sp. nov., an actinobacterial endophyte isolated from root nodules of Casuarina glauca. Ant. van Leeuv. 105:1099-1106 (DOI 10.1007/s10482-014-0168-6).

Ghazal, S., S.G. Hurst IV,  K. Morris, F. Abebe-Akele, W. K. Thomas, U.M. Badr, M.A. Hussein, M.A. AbouZaied, K.M. Khalil, and L.S. Tisa.  2014. Draft Genome Sequence of Photorhabdus luminescens strain BA1, an Entomopathogenic Bacterium Isolated from Nematodes Found in Egypt. Genome Announc. 2(3):e00396-14. doi:10.1128/genomeA.00396-14.

Hurst IV, S. G., F. Ghodhbane-Gtari, R. Oshone ,  K. Morris, F. Abebe-Akele, W. K. Thomas, A. Ktari, K. Salem, S. Mansour, M. Gtari, and L. S. Tisa. 2014. Draft Genome Sequence of Frankia sp. strain Thr, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina cunninghamiana Grown in Egypt. Genome Announc 2 (3):e00493-14. doi:10.1128/genomeA.00493-14.

Ghodhbane-Gtari, F., K. Hezbri, A. Ktari, I. Sbissi, N. Beauchemin, M. Gtari, and L. S. Tisa. 2014. Contrasted reactivity to oxygen tensions in Frankia sp. strain CcI3 throughout nitrogen fixation and assimilation. BioMed Research International 2014 Article ID 568549, 8 pages. DOI:http://dx.doi.org/10.1155/2014/568549.

Ghodhbane-Gtari, F., S. G. Hurst IV, R. Oshone ,  K. Morris, F. Abebe-Akele, W. K. Thomas, A. Ktari, K. Salem,  M. Gtari, and L. S. Tisa. 2014. Draft Genome Sequence of Frankia sp. strain BMG5.23, a Salt-tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina glauca Grown in Tunisia. Genome Announc 2(3) e00520-14. Doi: 10.1128/genomeA00520-14.

Rehan, M., T. Furnholm, R.H. Finethy, F. Chu, G. El Fadley, and L. S. Tisa. 2014. Copper tolerance by Frankia sp. strain EuI1c involves surface-binding and copper transport. Appl. Microbiol. Biotech 98:8005-8015. DOI 10.1007/s00253-014-5849-6.

Petersen, L.P and L.S. Tisa. 2014. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence. J. Bacteriol. 196:3923-3936 doi:10.1128/JB.01908-14

Furnholm, T. and L.S. Tisa. 2014. The ins and outs of metal homeostasis by the root nodule Actinobacterium Frankia. BMC Genomics 15:1092  (http://www.biomedcentral.com/1471-2164/15/1092) doi:10.1186/1471-2164-15-1092.

Hurst IV, S. G. ,  S. Ghazal, K. Morris, F. Abebe-Akele, W. K. Thomas, U. M. Badr, M. A. Hussein, M. A. AbouZaied, K. M. Khalil, and L. S. Tisa. 2014. Draft Genome Sequence of Photorhabdus temperata strain Meg1, an Entomopathogenic Bacterium Isolated from Heterorhabditis megidis Nematodes. Genome Announc 2(6) e01273-14. Doi: 10.1128genomeA01273-14.

Normand, P., D. R. Benson, A. M. Berry and L. S. Tisa. 2014. Family Frankiaceae. Chapter 183 In The Prokaryote – Actinobacteria (4th ed) Editors Rosenberg, Lory, DeLong, Thompson, Stackebrandt  pp. 339-356, DOI 10.1007/978-3-30138-4_183.

Ghodhbane-Gtari, F. and L. S. Tisa. 2014. Ecology and physiology of non-Frankia actinobacteria from actinorhizal plants. Chapter 4 in Plasticity in Plant-Growth-Promoting and Phytopathogenic Bacteria, E. I. Katsy (ED.) pp. 27-42 Springer, NY.  DOI
10.1007/978-1-4614-9203-0_2.

Lee, H. I., A. J. Donati, D. Hahn, L. S. Tisa, and W. S. Chang. 2013. Alterations of the exopolysaccharide production and transcriptional  profile of Frankia strain CcI3 under nitrogen-fixing conditions. Appl. Microbiol. Biotech. 97:10499-10509. DOI 0.1007/s00253-013-5277-z.

Gtari, M., L. S. Tisa, and P. Normand. 2013. Diversity of Frankia strains, actinobacteria symbionts of actinorhizal Plants. Chapter 7 In Symbiotic Endophytes (Ricardo Aroca (Ed) Springer´s series Soil Biology 37 pp123 - 148 (series editor is Prof. Ajit Varma) DOI 10.1007/978-3-642-39317_7.

Bhattacharya, S., A. Sen, S. Thakur, and L. S. Tisa. 2013. Characterization of Hemoglobin from actinorhizal plants - An in-silico approach. J Bioscience 38:777-787.

Tisa, L. S., N. Beauchemin, M. Gtari, A. Sen, and L. G. Wall. 2013. What stories can the Frankia genomes start to tell us? J. Bioscience 38:719-726.

Sur, S., S. Saha, L. S. Tisa, A. Bothra, and A. Sen. 2013. Characterization of pseudogenes in members of the order Frankineae.  J Bioscience 38:727-732.

Oshone, R., S. Mansour, and L. S. Tisa. 2013. The effect of salt stress on the physiology of Frankia sp. strain CcI6. J. Bioscience 38:699-702.

Petersen, L. and L. S. Tisa. 2013. Influence of secreted compounds on the diverse ecological functions of Serratia. Can. J. Microbiol. 59:627-640.

Wall L. G., N. Beauchemin, M. N. Cantor, E. Chaia, A. Chen,  J. C.  Detter, T. Furnholm, F. Ghodhbane-Gtari, L. Goodwin, M. Gtari, C. Han, J. Han,  M. Huntemann, S. X. Hua, N. Ivanova,  N. Kyrpides,  V. Markowitz, K. Mavrommatis, N. Mikhalova, H. P. Nordberg, I. Nouioui, G. Ovchinnikova, I. Pagani, A. Pati, A. Sen, S. Sur, E. Szeto, S. Thakur, C.-L. Wei, T. Woyke, and L. S. Tisa. 2013. Draft Genome sequence of Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis.  GenomeAnnounc 1(4) e00503-13 doi:10.1128/genomeA00503-13.

Nouioui, I., N. Beauchemin, M. N. Cantor, A. Chen,  J. C.  Detter, T. Furnholm, F. Ghodhbane-Gtari, L. Goodwin, M. Gtari, C. Han, J. Han,  M. Huntemann, S. X. Hua, N. Ivanova,  N. Kyrpides,   V. Markowitz, K. Mavrommatis, N. Mikhalova, H. P. Nordberg, G.
Ovchinnikova, I. Pagani, A. Pati, A. Sen, S. Sur, E. Szeto, S. Thakur,  L. Wall, C.-L. Wei, T. Woyke, and L. S. Tisa. 2013. Draft Genome
sequence of Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils. GenomeAnnounc 1(4)e00468-13 doi:10.1128/genomeA00468-13.

Thakur, S., P. Normand, V. Daubin, L. S. Tisa, and A. Sen. 2013. Contrasted evolutionary constraints on secreted and non-secreted proteomes of selected Actinobacteria. BMC Genomics 2013, 14:474

Sen, A., N. Beauchemin, D. Bruce, P. Chain,  A. Chen, K. Walston Davenport, S. Deshpande, C. Detter, T. Furnholm, F. Ghodbhane-Gtari,  L. Goodwin, M. Gtari, C. Han, J. Han,  M. Huntemann, N. Ivanova,  N. Kyrpides, M. L.  Land,  V. Markowitz, K. Mavrommatis, M. Nolan, I. Nouioui, I. Pagani , A. Pati, S. Pitluck, C. L. Santos , S. Sur, E. Szeto, F. Tavares, H. Teshima, S. Thakur,  L. Wall,  J. Wishart, T. Woyke, and L. S. Tisa. 2013. Draft Genome sequence of Frankia sp.  strain QA3 , a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida. Genome Announc1(2):e00103-13. doi: 10.1128/genomeA.00103-13.

Ghodbhane-Gtari, F., N. Beauchemin, D. Bruce, P. Chain,  A. Chen, K. Walston Davenport, S. Deshpande, C. Detter, T. Furnholm, L. Goodwin, M. Gtari, C. Han, J. Han,  M. Huntemann, N. Ivanova,  N. Kyrpides, M. L.  Land,  V. Markowitz, K. Mavrommatis, M. Nolan, I. Nouioui, I. Pagani , A. Pati, S. Pitluck, C. L. Santos , A. Sen, S. Sur, E. Szeto, F. Tavares, H. Teshima, S. Thakur,  L. Wall,  T. Woyke, and L. S. Tisa. 2013. Draft Genome sequence of Frankia sp.  strain CN3 , an atypical, non-infective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis.  Genome Announc  1(2):00085-13. doi: 10.1128/genomeA.00085-13.

Turpapati, S. A., R. Minocha, P. Bhairvarasa, L. S. Tisa, W. K. Thomas, and S. C. Minocha. 2013. Chronic N-amended soils exhibit an  altered bacterial community structure in Harvard Forest MA, USA.  FEMS Microbial Ecology  83:478-493  
(doi:10.1111/1574-6941.12009).

Kundu, S., A. Bothra, L. S. Tisa, and A. Sen. 2012. In silico analysis reveals the role of horizontally transferred genes (HGTs) in shaping the pathogenicity of Xanthomonas. Ind. J. Biotech. 11:404-411.

Petersen, L. and L. S. Tisa. 2012. Temperature influences the physiology and virulence of the insect pathogen Serratia sp. SCBI. Appl. Environ. Microbiol. 78:8840-8844 (doi:10.11268/AEM02580.12).

Abebe-Akele, F., L. S. Tisa, E. Abede, V. Cooper, and K. Thomas. 2012. Characterizing a novel entomopathogenic partnership between Serratia spp. and Rhabditid nematodes. J. Nematology 43:54.

Beauchemin, N. J., T. Furnholm, J. Lavenus, S. Svistoonoff, P. Doumas, D. Bogusz, L. Laplaze, and L. S. Tisa. 2012. Casuarina Root Exudates Alter Frankia Physiology, Surface Properities and Plant infectivity.  Appl. Environ Microbiol 78:575-580
(doi:10.1128/AEM.06183-1).

Ganapathi, S., R. Monocha, S. A. Turlapati, K. C. Goldfarb, E. L. Brodie, L. S. Tisa, and S. Minocha. 2012. Watershed-scale calcium supplementation alters soil bacterial community composition at Hubbard Brook Experimental Forest (HBEF), New Hampshire. FEMS Microbial Ecol. 79:728-740. (DOI 10.1111/j.1574-6941.2011.01258).

Furnholm, T., N. Beauchemin, and L. S. Tisa. 2012. Development of a Semi-High Throughput Growth Assay for the Filamentous Actinobacteria Frankia. Arch. Microbiol. 194:13-20 (DOI 10.1007/s00203-011-0748-z).

Sen, A., S. Thakur, A. K. Bothra, S. Sur and L. S Tisa.  2012. Identification of TTA codon containing genes in Frankia and exploration of the role of tRNA in regulating these genes. Arch Microbiol. 194:35-45 (DOI 10.1007/s00203-011-0731-8).

Gtari, M., F. Ghodhbane-Gtari, I. Nouioui, N. Beauchemin, and L. S. Tisa. 2012. Phylogenetic perspectives of nitrogen-fixing
actinobacteria. Arch. Microbiol. 194:3-11 (DOI 10.1007/s00203-011-0733-6).

Nouioui, I, F. Ghodhbane-Gtari, N. Beauchemin, L. S. Tisa, and M. Gtari. 2011 Phylogeny of members of Frankia genus based on gyrB, nifH and glnII sequences. Anton van Leeuv. 100:579-587 DOI 10.1007/s10482-011-9613-y.

Udwary, D. W., E. A. Gontang, A. C. Jones, A. W. Schultz, C. M. Sorrels, J. M. Winter, J. Y. Yang, N. Beauchemin, T. L. Capson, B. R. Clark, E. Esquenazi, A. S. Eustáquio, K. Freel, D. J. Gonzalez, L. Gerwick, W. H. Gerwick, W.-T. Liu, K. L. Malloy, K. N. Maloney, M. Nett, J. K. Nunnery, K. Penn, A. Prieto-Davo, T. L. Simmons, S. Weitz, M. C. Wilson, L. S. Tisa, P. C. Dorrestein, and B. S. Moore. 2011. Comparative genomic and proteomic analysis of the actinorhizal symbiont Frankia reveals significant natural product biosynthetic potential. Appl. Environ. Microbiol. 77:3617-3625 (doi:10.1128/AEM.00038-11).

Michaels, B. and L. S. Tisa. 2011. Swarming motility by Photorhabdus temperata is influenced by environmental conditions and uses the same flagella as that used in swimming motility.  Can. J. Microbiol. 57:196-203.

Perrine-Walker F., P.  Doumas, M. Lucas, V. Vaissayre, N.  Beauchemin, L. Band, J. Chopard, A. Crabos, G. Conejero, B. Peret, J.-L. Verdeil, V. Hocher, C Franche, M.J. Bennett,  L. S. Tisa, and Lalpaze, L. 2010. Specific auxin carriers localization direct auxin
accumulation in plants cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol.154:1372-1380.

Sur, S., A. Sen, L. S. Tisa, U. Kr. Mondal, S. Thakur, and A. Kr. Bothra. 2010. Homology modeling of nitrogenase iron proteins from three Frankia strains. Symbiosis 50:37-44 .

Recent Abstracts (post 2011):

Tisa, L.S., S. Svistoonoff, N. Beauchemin, S. Hurst IV, T. Furnholm, R. Oshone,  V. Vaissayre, C. Franche, and D.B ogusz. 2014.
Frankia Genomics and Genome-guided approaches toward understanding the actinorhizal symbiosis. Invited Speaker to the 17th International Symposium on the Biology of the Actinomycetales. October 8-12, 20144 in Izmir, Turkey.

Tisa, LS. 2013 Genome-guided approaches toward understanding the actinorhizal symbiosis. Invited plenary speaker to the 18th International Conference on Nitrogen Fixation in Miyazaki, Japan October 14-18, 2013 (Invited Talk).

Beauchemin, N.,  M. Gtari, , A. Sen,   L. Wall, and L. S. Tisa. 2013. What stories can the Frankia genomes tell us? The 17th International Conference on Frankineae and Actinorhizal Plants April 10-12, 2013 Shillong, India (Invited Talk)

Svistoonoff, S., N. Beauchemin, V. Vaissayre, C. Franche, D. Bogusz, and L.S. Tisa. 2013. Genome-guided approaches toward elucidating the signaling mechanisms in the actinorhizal symbiosis. Invited plenary speaker to the 22st North American Symbiotic Nitrogen Fixation Conference in Minneapolis, MN July  14-17, 2013 (Invited Talk)

Oshone, R. M. Ngom, N. Diegane, D. Diouf, V. Hocher, M. Ouretye SY, L. Laplaze, A. Champion, and  L.S. Tisa. 2014.  Identification and molecular characterization of salt stress tolerance in Frankia isolates from Casuarina plants. The 114th General Meeting of the American Society for Microbiology May 17-20, 2014 in Boston, MA.

Chabaud,M.,  H. Gherbi, E. Pirolles, V. Vaissayre, J. Fournier, D. Moukouanga, C. Franche, D. Bogusz, L.S.Tisa, D.G. Barker, and S. Svistoonoff. 2014. Chitinase-resistant symbiotic factors secreted by Frankia activate both Ca2+ spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. The 11th European Nitrogen Fixation Conference. September 9-14, 2014, Canary Islands, Spain.

Petersen, L., F. Abebe-Akele, W. K. Thomas, V. S. Cooper, and L. S. Tisa. 2013 Identifying virulence factors in the insect pathogen Serratia sp. Strain SCBI.  Gordon Conference: Applied and Environmental Microbiology: Exploring and Exploiting the Depths of the Microbial Biosphere. July 7-12, 2013 Mount Holyoke College, South Hadley, MA. 

Sheldon Hurst IV, Holli Rowedder, Fesha Abebe-Akele, Hannah Bullock,  and Louis S. Tisa. 2012.  Genomic and Genetic analysis of Photorhabdus temperata to understand its symbiotic life style. The 7th Congress for the international Symbiosis Society July 22-27,  2012 in Karkow, Poland.

Hassen Gherbi, Alexandre Tomas, Valérie Hocher, Leandro Imanishi, Faiza Benabdoun, Nacira Munoz, Ramiro Lascano, Amandine Crabos, Antony Champion, Laurent Laplaze, Luis Wall, Louis Tisa, Claudine Franche, Didier Bogusz, and Sergio Svistoonoff. 2012 Common molecular events underlying rhizobial and actinorhizal nodulation. Gordon Conference: Plant Molecular Biology Genomic Approaches to Plant Signaling Systems. July 15-20,2012 Holderness School, Holderness, NH.

Lauren M. Petersen, Feseha Abebe-Akele, Vaughn Cooper, Kelley Thomas, and Louis S. Tisa. 2012.  Identifying virulence factors in the insect pathogen Serratia sp. SCBI. The Boston Bacterial Meeting June 7-8, 2012.

Sheldon Hurst IV, Holli Rowedder, Fesha Abebe-Akele, Hannah Bullock, and Louis S. Tisa. 2012.  Genomic and Genetic analysis of Photorhabdus temperata to understand its symbiotic life style.  The Boston Bacterial Meeting June 7-8, 2012.

Ethan Baker, Medhat Rehan, and Louis S. Tisa. 2012. The metabolic potential of Frankia strains CcI3 and EuI1c for resistance and degradation of aromatic compounds. The Boston Bacterial Meeting June 7-8, 2012 (Poster).

Beauchemin, N. J., M. Gtari, F. Ghodbhane-Gtari, T. Furnholm, A. Sen, L. Wall, F. Tavares, C. Santos, I. Nouioui, F. Xu, S. Lucus, A. Copeland, A. Lapidus, T. Galina del Rio, H. Tice, D. Bruce, L. Goodwin, S. Pitluck, F. Larimer, M.L. Land , L. Hauser,  and L. S. Tisa. 2012. What can the genome of an infective ineffective (Fix-) Frankia. Strain (EuI1c) that is able to form  nodules with its host plant tell us about actinorhizal symbiosis and Frankia evolution.  The 112th General Meeting of the American Society for Microbiology June 16-20, 2012 in San Francisco, CA.

Ethan Baker, Medhat Rehan, and  Louis S. Tisa. 2012. The metabolic potential of Frankia strains CcI3 and EuI1c for resistance and degradation of aromatic compounds.  The 112th General Meeting of the American Society for Microbiology June 16-20, 2012 in San Francisco, CA.

Hermann Prodjinoto1-2, Nathalie Diagne2, Ibrahima Ndoye1-2, Diégane Diouf1-2, Valérie Hocher3, Louis Tisa, Mathish Nambiar-Veetil5, Laurent Laplaze. 2012. Rehabilitation of salinised soils using Casuarina trees.  TWAS BioVision Alexandria.NXT 2012 by the TWAS (Academy of Sciences for the Developing World) and Bibliotheca Alexandrina (BA) on 20-25 April, 2012.

Rowedder, H., H. Bullock, C. Chapman, C. Felix, J. Gately, S. Hurst IV, and L. S. Tisa. 2011. Identification of Photorhabdus
temperata
Mutants Altered in Nematode Symbiosis and/or Insect Pathogenesis. The 3rd Annual NEMASYM Research Coordination Network Meeting (a satellite of the 50th Society of Nematologists Meeting) July 16-17, 2011 in Corvallis, OR.

Hurst IV*, S., H. Rowedder, F. Abebe-Akele, H. Bullock,  and L. S. Tisa. 2011.  Elucidation of the Photorhabdus temperata genome and comparative genomics. The 3rd Annual NEMASYM Research Coordination Network Meeting (a satellite of the 50th Society of Nematologists Meeting) July 16-17, 2011 in Corvallis, OR (talk).

Hurst IV, S., C. Felix, A. Gonsalves, B. Michaels, and L. S. Tisa. 2011. Identification of Photorhabdus temperata Mutants Altered in Antimicrobial Activity. Abstracts of the 111th General Meeting of the American Society for Microbiology 2011. ASM, Washington, D.C. (New Orleans, LA).

Furnholm, T., A. Sen, A. Kolinsky, and L. S. Tisa. 2011. Regulation and Expression of Frankia Heavy Metal Resistance Genes.
Abstracts of the 111th General Meeting of the American Society for Microbiology 2011. ASM, Washington, D.C. (New Orleans, LA).

Chapman, C.A., S. G. Hurst IV, C. R. Felix, B. Michaels, and L. S. Tisa. 2011.  Do hemolysins promote virulence in invertebrate pathogens? Abstracts of the 111th General Meeting of the American Society for Microbiology 2011. ASM, Washington, D.C. (New
Orleans, LA).

Felix, C R., S. G. Hurst IV, C. A. Chapman, B. A. Michaels, and L. S. Tisa. 2011. Identification of Photorhabdus temperata mutants with altered cell surface properties and nematode interaction. Abstracts of the 111th General Meeting of the American Society for Microbiology 2011. ASM, Washington, D.C. (New Orleans, LA).

Graduate Students

 

1.  Tim D'Angelo (td2005@wildcats.unh.edu)
2.  Erik Swanson (es2013@wildcats.unh.edu)
3.  Tyler Koloski (tjk2005@wildcats.unh.edu)
4.  Rediet T. Oshone (rts42@wildcats.unh.edu)
5.  Shimaa Ghazal (shimaaghazal@yahoo.com)

Undergraduate Students 

1.  Emily A Lundstedt (eaf82@wildcats.unh.edu)
2.  Melissa E. McLaughlin (mes238@wildcats.unh.edu)
3.  Evan J. Carignan (ejv55@wildcats.unh.edu
4.  Rebecca Audette (ref46@wildcats.unh.edu)
5.  Zakkary McNutt (zay8@wildcats.unh.edu)

Past Graduate Students

1. Teal R. Furnholm Microbiology  PhD   11. Brandye Micheals (Day) Microbiology  PhD
2. Sheldon G. Hurst IV Microbiology  PhD   12. Tania Spenlinhauer (Rawnsley) Microbiology  PhD
3. Lauren M. Petersen Genetics       PhD   13. James Niemann Microbiology  MS
4. Ethan C. Baker Microbiology  MS   14. Holli Rowedder Microbiology  MS
5. Glenn Krumholz Microbiology  MS   15. Nicholas Beauchemin Microbiology  MS
6. Donald White Microbiology  MS   16. Muhammad Arif Microbiology  PhD
7. Chuck Turick Microbiology  PhD   17. Cintia Felix Microbiology  MS
8. Anna Myers (Graf) Microbiology  MS   18. Christine Chapman Microbiology  MS
9. Walid Naser Microbiology  PhD   19. Medhat Rehan Genetics       PhD
10. Carmela Mascio Microbiology  MS        

 

Past Visiting Scientist  

  1. Mariama Ngom University of Cheikh Anta Diop, Dakar, Senegal (maringom@hotmail.fr)
  2. Arnab Sen, University of North Bengal (aaz28@cisunix.unh.edu) (senarnab_nbu@hotmail.com)
  3. Samira Mansour, Suez Canal University  (samiramansour@hotmail.com) 
  4. Maher Gtari, Université Tunis El Manar (maher.gtari@fst.rnu.tn)
  5. Faten Ghodhbane-Gtari, Université Tunis El Manar (faten.ghod@gmail.com)
Lou Tisa
Rudman Hall, Room 289
Durham, NH 03824
Phone: 
(603) 862-2442